SSLC CLASS NOTES -Chapter 3

REAL

NUMBERS

REAL NUMBERS

- EUCLID'S DIVISION LEMMA

$a=(b x q)+r$

$\mathbf{0} \leq \mathbf{r}<\boldsymbol{b}$
\mathbf{a} - Dividend ; \mathbf{q} - quotient; \mathbf{b} - Divisor; \mathbf{r} - remainder

- Finding HCF of two positive integers Using this lemma.

If the divisor is a factor of the dividend, the last remainder will be zero.The last but one non-zero remainder willl be the H.C.F.

- Prime numbers

A positive integer ' p ' is considered a prime number, if, (i) $\mathrm{p}>1$ and

- p dose not have factors other than 1 and p
- Composite numbers:

A number greater than 1 and not a prime number is a composite number

- Co-Primes:

Two numbers ' a ' and ' b ' are said to be co-prime if the only common divisor of a^{\prime} and b^{\prime} ' is $\mathbf{1}$

ILLUSTRATIVE EXAMPLES

Example1: Find the largest number that divides 455 and 42 with the help of division algorithm.

42	455	10	\longleftarrow quotient
	420		
	35		remainder
$\therefore 455=(42 \times 10)+35$			
35	42	1	quotient
	35		
	7		emainder

$\therefore 42=(35 \mathrm{x} 1)+7$

SSLC Class Notes Chapter -3

$\therefore 35=(7 \mathrm{x} 5)+0$
$\therefore \operatorname{HCF}(455,42)=\operatorname{HCF}(42,35)=\operatorname{HCF}(35,7)=7$
$\therefore 7$ is the largest number that divides 455 and 42
Example2: : Show that every positive even integer is of the form 2 q and every positive odd integer is of the form $2 \mathrm{q}+1$, where q is a whole number.
Sol: (i) Let 'a' be an even positive integer,
Apply division algorithm with a and b, where $b=2$
$\mathrm{a}=(2 \times \mathrm{q})+\mathrm{r}$ where $0 \square \mathrm{r}<2$
$\mathrm{a}=2 \mathrm{q}+\mathrm{r}$ where $\mathrm{r}=0$ or $\mathrm{r}=1$
since ' a ' is an even positive integer, 2 divides ' a '
r=0 ఆగిరౌబిలもు
$\therefore \mathrm{a}=2 \mathrm{q}+0 \Rightarrow \mathrm{a}=2 \mathrm{q}$
Hence, $a=2 q$ when ' a ' is an even positive integer
(ii) Let 'a' be an odd positive integer.
apply division algorithm with a and b, where $b=2$
$\mathrm{a}=(2 \times \mathrm{q})+\mathrm{r}$ where $0 \square \mathrm{r}<2$
$\mathrm{a}=2 \mathrm{q}+\mathrm{r}$ where $\mathrm{r}=0$ or 1
Here, $r \neq 0(\because a$ is not even $) \Rightarrow r=1$
A $=2 q+1$
Hence, $\mathrm{a}=2 \mathrm{q}+1$ when ' a ' is an odd positive integer.
$\mathrm{r} \neq o \Rightarrow \mathrm{r}=1$
$\therefore \mathrm{a}=2 \mathrm{q}+1$
Example3: Use Euclid's division lemma to show that cube of any positive integer is either of the form $9 \mathrm{~m}, 9 \mathrm{~m}+1$ or $9 \mathrm{~m}+8$ for some integer ' m '.
Sol: Let a and b be two positive integers, and $\mathrm{a}>\mathrm{b}$
\therefore By Uclid's division lemma: $\mathrm{a}=\mathrm{bq}+\mathrm{r}$ ఇల్లి $0 \leq \mathrm{r}<\mathrm{b}$
Let $\mathrm{b}=3$, [multiply 9 by 3 we get cube number]
$\therefore \mathrm{a}=3 \mathrm{q}+\mathrm{r}$ where $0 \leq \mathrm{r}<3$
(i) If $r=0$ then $a=3 q$
$\mathrm{a}^{3}=(3 \mathrm{q})^{3}=27 \mathrm{q}^{3}=9\left(3 \mathrm{q}^{3}\right)=9 \mathrm{~m}$ where $\mathrm{m}=3 \mathrm{q}^{3}$ and ' m ' is an integer
(ii) If $r=1$ then $a=3 q+1$
$\mathrm{a}^{3}=(3 \mathrm{q}+1)^{3}=27 \mathrm{q}^{3}+27 \mathrm{q}^{2}+9 \mathrm{q}+1$
$=9\left(3 q^{3}+3 q^{2}+q\right)+1$
$=9 m+1$, where $m=3 q^{3}+3 q^{2}+q$ and ' m ' is an integer
(iii) if $r=2$ then $a=3 q+2$
$\mathrm{a}^{3}=(3 \mathrm{q}+2)^{3}=27 \mathrm{q}^{3}+54 \mathrm{q}^{2}+36 \mathrm{q}+8$
$=9\left(3 q^{2}+6 q^{2}+4 q\right)+8=9 m+8$ wherem $=3 q^{2}+6 q^{2}+4 q$ and ' m ' is an integer

SSLC Class Notes Chapter -3

\therefore cube of any positive integer is either of the form $9 \mathrm{~m}, 9 \mathrm{~m}+1$ or $9 \mathrm{~m}+8$ for some integer m.
Example4: Prove that, if x and y are odd positive integers, then $\mathrm{x}^{2}+\mathrm{y}^{2}$ is even but not divisible by 4 .
Sol: We know that any odd positive integer is of the form $2 \mathrm{q}+1$, where q is an integer.
So, let $\mathrm{x}=2 \mathrm{~m}+1$ and $\mathrm{y}=2 \mathrm{n}+1$, for some integers m and n .
$\therefore \mathrm{x}=2 \mathrm{~m}+1$ and $\mathrm{y}=2 \mathrm{n}=1 \quad[\mathrm{~m}, \mathrm{n}]$
$x^{2}+y^{2}=(2 m+1)^{2}+(2 n+1)^{2}$
$\mathrm{x}^{2}+\mathrm{y}^{2}=4 \mathrm{~m}^{2}+4 \mathrm{~m}+1+4 \mathrm{n}^{2}+4 \mathrm{n}+1$
$\mathrm{x}^{2}+\mathrm{y}^{2}=4\left(\mathrm{~m}^{2}+\mathrm{n}^{2}\right)+4(\mathrm{~m}+\mathrm{n})+2$
$\mathrm{x}^{2}+\mathrm{y}^{2}=4\left[\left(\mathrm{~m}^{2}+\mathrm{n}^{2}\right)+(\mathrm{m}+\mathrm{n})\right]+2$
$x^{2}+y^{2}=4 q+2$, ఇల్లి $q=\left(m^{2}+n^{2}\right)+(m+n)$
$\therefore \mathrm{x}^{2}+\mathrm{y}^{2}$ is even and leaves remainder 2 when divided by 4 .
$\therefore \mathrm{x}^{2}+\mathrm{y}^{2}$ is even but not divisible by 4 .
Example 5: A book seller has 28 Kannada and 72 English books. The books are of the same size. These books are to be packed in separate bundles and each bundle must contain the same number of books. Find the least number of bundles which can be made and also the number of books in each bundle.
Sol: To find the number of books in pack We have to find the HCF of 28 and 72 by Euclid's lemma
$72=28 \times 2+16$
$28=16 \mathrm{x} 1+12$
$16=12 \times 1+4$
$12=4 \mathrm{X} 3+0$
\therefore H.C.F $=4$
\therefore Each bundle contains 4 books.
\therefore No. of bundles of Kannada books $=28 / 4=7$
\therefore No. of bundles of Engliss books $=72 / 4=18$

Exercise 3.1

1. Use Euclid's division algorithm to find the HCF of the following numbers
(i) 65 and 117 (ii) 237 and 81 (iii) 55 and 210 (iv) 305 and 793.
(i) 65 and 117

By Euclid's division lemma $\mathbf{a}=\mathbf{b q}+\mathbf{r}$

65	117	1
	65	
	52	

By Euclids division algorithm

$$
117=65 \times 1+52
$$

By Euclids division algorithm

$$
65=52 \times 1+13
$$

13	52	4
	52	
	00	

\therefore H.C.F. 65 దుత్తు $117=13$
(ii) 237 and 81

81	237	2
	162	
	75	
75	81	1
	75	
	06	

6	75	12
	72	
	03	

03	06	12
	72	
	03	

\therefore The H.C.F of 237 and $81=3$

(iii) 55 దుత్తు 210

55	210	3
	165	
	45	
45	55	1
	45	
	10	
10	45	4
	40	
	05	

05	10	2
	10	
	00	

\therefore The H.C.F of 55 and $210=5$

By Euclids division algorithm

$$
52=13 \times 4+0
$$

By Euclids division algorithm

$$
237=81 \times 2+75
$$

By Euclids division algorithm

$$
81=75 \times 1+6
$$

By Euclids division algorithm

$$
75=6 \times 12+3
$$

By Euclids division algorithm

$$
6=3 \times 2+0
$$

By Euclids division algorithm

$$
210=55 \times 3+45
$$

By Euclids division algorithm

$$
55=45 \times 1+10
$$

By Euclids division algorithm

$$
45=10 \times 4+5
$$

By Euclids division algorithm

$$
10=5 \times 2+0
$$

SSLC Class Notes Chapter -3
(iv) 305 దుత్తు 793

305	793	2
	610	
	183	
183	305	1
	183	
	122	
122	183	1
	122	
	61	

By Euclids division algorithm

$$
793=305 \times 2+183
$$

By Euclids division algorithm

$$
305=183 \times 1+122
$$

By Euclids division algorithm

$$
183=122 \times 1+61
$$

61	122	2
	122	
	00	

By Euclids division algorithm

$$
10=5 \times 2+0
$$

\therefore The H.C.F of 305 and $793=61$

1. Show that any positive even integer is of the form 4 q or $4 \mathrm{q}+2$, where q is a whole number.
a^{\prime} and b are positive integer and $\mathrm{a}>\mathrm{b}$.
By Euclids division algorithm,
$\mathrm{a}=\mathrm{bq}+\mathrm{r} ; 0 \leq r<b$
If $b=4$,
$\mathrm{a}=(4 \mathrm{x} 2)+\mathrm{r}, 0 \leq r<4 \therefore \mathrm{r}=0,1,2,3$.
i) If $r=0$,
$\mathrm{a}=4 \mathrm{q} \Rightarrow \mathrm{a}=2(2 \mathrm{q})$ This is divided by $2 \therefore$ This is even
ii) If $\mathrm{r}=1$,
$\mathrm{a}=4 \mathrm{q}+1 \Rightarrow \mathrm{a}=2(2 \mathrm{q})+1$ This is not divided by $2 \therefore$ This is odd.
iii) If $r=2$,
$\mathrm{a}=4 \mathrm{q}+2 \Rightarrow \mathrm{a}=2(2 \mathrm{q}+1)$ This is divided by $2 \therefore$ This is even.
iv) If $r=3$,
$\mathrm{a}=4 \mathrm{q}+3 \Rightarrow \mathrm{a}=2(2 \mathrm{q}+1)+1$ This is not divided by $2 \therefore$ This is odd.
\therefore Any positive integer is of the form $4 q$ and $4 q+2$
2. Use Euclid's division lemma to show that the square of any positive integer is either of the form 3 m or $3 \mathrm{~m}+1$ for some integer m , but not of the form $3 \mathrm{~m}+2$.
If any positive integer divided by 3 , then the reminders are 0,1 and 2 .
$\therefore a$ is of the form $3 q, 3 q+1$ or $3 q+2$.
i) If $a=3 q$ then, $a^{2}=(3 q)^{2}=9 q^{2}=3\left(3 q^{2}\right)=3 m \quad\left(m=3 q^{2}\right)$
ii) If $a=3 q+1$ then, $a^{2}=(3 q+1)^{2}=9 q^{2}+6 q+1$
$=3\left(3 q^{2}+2\right)+1=3 m+1\left(m=3 q^{2}+2\right)$
iii) If $a=3 q+2$ then, $a^{2}=(3 q+2)^{2}=9 q^{2}+12 q+4$
$\Rightarrow a^{2}=9 q^{2}+12 q+3+1$
$\Rightarrow 3\left(3 q^{2}+4 q+1\right)+1=3 m+1 \quad\left(m=3 q^{2}+4 q+1\right)$
From (i), (ii)and (iii)

SSLC Class Notes Chapter -3

\therefore we can conclude that the square of any positive integer is either of the form 3 m or $3 \mathrm{~m}+1$ for some integer m , but not of the form $3 \mathrm{~m}+2$.
3. Prove that the product of three consecutive positive integers is divisible by 6 .

Let the three consecutive integers are : $\mathrm{n}, \mathrm{n}+1$ and $\mathrm{n}+2$
By Euclids division algorithm,
$a=6 q+r ; 0 \leq r<6(r=0,1,2,3,4,5)$
i) If $r=0$ then, $n=6 q$
$\Rightarrow \mathrm{a}=\mathrm{n}(\mathrm{n}+1)(\mathrm{n}+2)$
$a=6 q(6 q+1)(6 q+2)$
$a=6[q(6 q+1)(6 q+2)]$
This is divided by 6 .
ii) If $r=1$ then, $n=6 q+1$
$\Rightarrow a=6 q+1(6 q+1+1)(6 q+1+2)$
$a=(6 q+1)(6 q+2)(6 q+3)$
$a=(6 q+1) 2(3 q+1) 3(2 q+1)$
$a=6[(6 q+1)(3 q+1)(2 q+1)]$
This is divided by 6 .
iii) If $r=2$ then, $n=6 q+2$
$\Rightarrow a=6 q+2(6 q+2+1)(6 q+2+2)$
$a=(6 q+2)(6 q+3)(6 q+4)$
$a=2(3 q+1) 3(2 q+1)(6 q+4)$
$a=6[(3 q+1)(2 q+1)(6 q+4)]$
$a=6(6 q+1)(3 q+1)(2 q+1)$
This is divided by 6 .
iii) If $r=3$ then, $n=6 q+3$
$\Rightarrow a=(6 q+3)(6 q+3+1)(6 q+3+2)$
$a=(6 q+3)(6 q+4)(6 q+5)$
$a=3(2 q+1) 2(3 q+2)(6 q+4)$
$a=6[(2 q+1)(3 q+2)(6 q+4)]$
This is divided by 6 .
iv) If $r=4$ then, $n=6 q+4$
$\Rightarrow a=(6 q+4)(6 q+4+1)(6 q+4+2)$
$a=(6 q+4)(6 q+5)(6 q+6)$
$a=(6 q+4)(6 q+5) 6(q+1)$
$a=6[(6 q+4)(6 q+5)(q+1)]$
This is divided by 6 .
v) $\mathrm{r}=4$ ఆదాగ, $\mathrm{n}=6 \mathrm{q}+5$

ఆగ $\mathrm{a}=(6 \mathrm{q}+5)(6 \mathrm{q}+5+1)(6 \mathrm{q}+5+2)$
$a=(6 q+5)(6 q+6)(6 q+7)$
$a=(6 q+5) 6(q+1)(6 q+7)$
$a=6[(6 q+5)(q+1)(6 q+7)]$
This is divided by 6 .
\therefore The product of three consecutive positive integers is divisible by 6

SSLC Class Notes Chapter -3

4. There are 75 roses and 45 lily flowers. These are to be made into bouquets containing both the flowers. All the bouquets should contain the same number of flowers. Find the number of bouquets that can be formed and the number of flowers in them.

45	$\mathbf{7 5}$	$\mathbf{1}$
	45	
	30	

$\mathbf{3 0}$	$\mathbf{4 5}$	$\mathbf{1}$
	30	
	15	

$\mathbf{1 5}$	$\mathbf{3 0}$	$\mathbf{2}$
	30	
	00	

\therefore The H.C.F. of 75 and $45=15$
$\therefore 15$ of bouquets can be formed.
Each bouquet contains $75 \div 15=5$ Rose and $45 \div 15=3$ Lily.
5. The length and breadth of a rectangular field is 110 m and 30 m respectively. Calculate the length of the longest rod which can measure the length and breadth of the field exactly.
6.

$\mathbf{3 0}$	$\mathbf{1 1 0}$	$\mathbf{3}$
	90	
	20	
$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{1}$
	20	
	10	

$\mathbf{1 0}$	$\mathbf{2 0}$	$\mathbf{2}$
	20	
	00	

\therefore The HCF. of 110 and $30=10$
\therefore length of the longest rod which can measure the length and breadth of the field exactly = 10aిe

ILLUSTRATIVE EXAMPLES

Example1: Find the HCF and LCM of 18 and 45 by prime factorisation method.
Sol:18 = 2 x 3 x 3
$45=3 \quad x \quad 3 \quad x \quad 5$
\therefore H.C.F. $=3 \times 3=9$ and
$\mathrm{LCM}=2 \times 3 \times 3 \times 5=90$
Example2: Find the HCF and LCM of 42 and 72 by prime factorisation method i.e., by fundamental theorem of arithmetic.

Sol:42 = 2 x 3 x 7
$72=2 \quad x \quad 2 \quad x \quad 2 \quad x \quad 3 ~ x ~ 3 ~$
$\therefore \mathrm{HCF}=2$ and
LCM. $=2 \times 2 \times 2 \times 3 \times 3 \times 7=3,024$
Example3: Find the HCF of 344 and 60 by prime factorisation method. Hence find their LCM.
Sol: $344=2 \times 2 \times 2 \times 43$
$60=2 \times 2 \times 3 \times 5$
$\operatorname{HCF}(344,60)=4$
$\mathrm{ax} \mathrm{b}=\operatorname{HCF}(\mathrm{a}, \mathrm{b}) \times \operatorname{LCM} .(\mathrm{a}, \mathrm{b})$
$344 \times 60=4 \times \operatorname{LCM} .(\mathrm{a}, \mathrm{b})$
$\operatorname{LCM}(\mathrm{a}, \mathrm{b})=\frac{344 \times 60}{4}$
LCM. $(\mathrm{a}, \mathrm{b})=5160$
Example4: Find the largest positive integer that will divide 150, 187 and 203
leaving remainders 6,7 and 11 respectively.
Sol:Let the number be ' x '
150 is dividing by ' x ' the remainder will be -6
$\therefore 150-6=144$ is exactly divisible by ' x '.
187 is dividing by ' x ' the remainder will be -7
$\therefore 187-7=180$ is exactly divisible by ' x '.
203 is dividing by ' x " the remainder will be -11
$\therefore 203-11=192$ is exactly divisible by ' x '.
\therefore ' x ' is the H.C.F. of 144,180 and 192
$144=2 \times 2 \times 2 \times 2 \times 3 \times 3$
$180=2 \times 2 \times 3 \times 3 \times 5$
$192=2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3$
$\therefore \mathrm{x}=2 \times 2 \times 3=12$
Example5: Find the smallest number that, when divided by 35,56 and 91 leaves remainders of 7 in each case.
If the number is divisible by 35,56 and 91 then it is the LCM of these numbers.
$35=5 \times 7$
$56=2 \times 2 \times 2 \times 7$
$91=7 \times 13$
$\therefore \mathrm{LCM}=2 \times 2 \times 2 \times 5 \times 7 \times 13=3,640$
Since it leaves a remainder 7, the required number is $7=3,640+7=3,647$
Example6: There is a circular path around a sports field. Sheela takes 36 minutes to drive one round of the field while Geeta takes 32 minutes to do the same. If they both start at the same point and at the same time and go in the same direction, after how many minutes will they meet again at the starting point.
Sol:: To find this, we have to find the LCM of 36 and 32
$36=2 \times 2 \times 3 \times 3$
$32=2 \times 2 \times 2 \times 2 \times 2$
\therefore LCM. $=2^{5} \times 3^{2}=32 \times 9=288$
\therefore Sheela and Geeta meet again at the starting point after 288 minutes.

SSLC Class Notes Chapter -3

Exercise 1.2

1. Express each number as a product of prime factors.

(i) 12		$120=2 \times 2 \times 2 \times 2 \times 3 \times 5$
2	120	
2	60	
2	30	
3	15	
5	5	
	1	

(ii) 3825

3	3825
3	1275
5	425
5	85
5	17
17	1

$3825=3 \times 3 \times 5 \times 5 \times 5$
(iii) 6762

2	6762	
3	3381	
7	1127	
7	161	$6762=2 \times 3 \times 7 \times 7 \times 23$
23	23	
	1	

(iv) 32844

2	32844
2	16422
3	8211
7	2737
17	391
23	23
	1

$32844=2 \times 2 \times 3 \times 7 \times 17 \times 23$
2. If $25025=P_{1}^{\mathrm{x}_{1}} \cdot P_{2}^{\mathrm{X}_{2}} \cdot \mathrm{P}_{3}^{\mathrm{X}_{3}} \cdot \mathrm{P}_{4}^{\mathrm{x}_{4}}$. find the value of $\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}, \mathrm{P}_{4}$, and $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{X}_{3}, \mathrm{x}_{4}$.

5	25025
5	5005
7	1001
11	143
13	13
	1

$25025=5^{2} \times 7 \times 11 \times 13$
$\therefore \mathrm{P}_{1}=5, \mathrm{P}_{2}=7, \mathrm{P}_{3}=11, \mathrm{P}_{4}=13$,

SSLC Class Notes Chapter -3

$x_{1}=2, x_{2}=1, x_{3}=1, x_{4}=1$
3. Find the LCM and HCF of the following integers by expressing them as product of primes.
(i) 12,15 దుత్తు 30
$12=2 \times 2 \times 3=2^{2} \times 3$
$15=3 \times 5$
$30=2 \times 3 \times 5$
$\mathrm{HCF}=3$ and $\mathrm{LCM}=2^{2} \times 3 \times 5=60$
(ii) 18,81 and 108
$18=2 \times 3 \times 3=2 \times 3^{2}$
$81=3 \times 3 \times 3 \times 3=3^{4}$
$108=2 \times 2 \times 3 \times 3 \times 3=2^{2} \times 3^{3}$
$\mathrm{HCF}=3^{2}=9$ and $\mathrm{LCM}=2^{2} \times 3^{4}=4 \times 81=324$
4. Find the HCF and LCM of the pairs of integers and verify that LCM $(a, b) \times H C F$ $(\mathrm{a}, \mathrm{b})=\mathrm{a} \times \mathrm{b}$
(i) 16 and 80
$16=2 \times 2 \times 2 \times 2=2^{4}$
$80=2 \times 2 \times 2 \times 2 \times 5=2^{4} \times 5$
HCF $=2^{4}=16$ and LCM $=2^{4} \times 5=80$
$\operatorname{HCF}(a, b) \times \operatorname{LCM}(a, b)=16 \times 80=1280$
$a \times b=16 \times 80=1280$
$\therefore \operatorname{LCM}(\mathrm{a}, \mathrm{b}) \cdot \mathrm{xHCF}(\mathrm{a}, \mathrm{b}) .=\mathrm{a} \times \mathrm{b}$
(ii) 125 దుత్తు 55
$125=5 \times 5 \times 5=5^{3}$
$55=5 \times 11$
HCF = 5 and LCM $=5^{3} \times 11=1375$
$\operatorname{LCM}(a, b) \times \operatorname{HCF}(a, b)=5 \times 1375=6875$
$a \times b=125 \times 55=6875$
$\therefore \operatorname{LCM}(a, b) \times \operatorname{HCF}(a, b) .=a \times b$
5. If HCF of 52 and 182 is 26 , find their LCM.
$\operatorname{LCM}(a, b) \cdot x \operatorname{HCF}(a, b) .=a \times b$
$\operatorname{LCM}(\mathrm{a}, \mathrm{b}) \times \mathrm{x} 26=52 \times 182$
$\operatorname{LCM}(\mathrm{a}, \mathrm{b})=\frac{52 \times 182}{26}$
$\operatorname{LCM}(\mathrm{a}, \mathrm{b})=2 \times 182$
$\operatorname{LCM}(\mathrm{a}, \mathrm{b})=364$
6. Find the HCF of 105 and 1515 by prime factorisation method and hence find its

LCM.
105 and 1515
$105=3 \times 5 \times 7$
$1515=3 \times 5 \times 101$
HCF $=15$ and $L C M=5^{3} \times 11=10,605$
7. Find the smallest number which when increased by 17 is exactly divisible by both 520 and 468.
$520=2 \times 2 \times 2 \times 5 \times 13=2^{3} \times 5 \times 13$

SSLC Class Notes Chapter -3

$468=2 \times 2 \times 3 \times 3 \times 13=2^{2} \times 3^{2} \times 13$
$\therefore \mathrm{HCF}=2^{2} \times 13=4 \times 13=52$
$\therefore \mathrm{LCM}=2^{3} \times 3^{2} \times 5 \times 13=8 \times 9 \times 5 \times 13=4680$
$\therefore 4680-17=4663$
The number 4663 when increased by 17is exactly divisible by 520 and 468 .
8. A rectangular hall is 18 m 72 cm long and 13 m 20 cm broad. It is to be paved with square tiles of the same size. Find the least possible number of such tiles.
$18 \mathrm{~m} 72 \mathrm{~cm}=1872 \mathrm{~cm} ; 13 \mathrm{~m} 20 \mathrm{~cm} .=1320 \mathrm{~cm}$
The area of the Hall $=1872 \times 1320 \mathrm{sq} . \mathrm{cm}$
$1872=2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 13=2^{4} \times 3^{2} \times 13$
$1320=2 \times 2 \times 2 \times 3 \times 5 \times 11=2^{3} \times 3 \times 5 \times 11$
$\therefore \mathrm{HCF}=2^{3} \times 3=24$
$\therefore 1$ Area of tiles $=24 \times 24 \mathrm{sq} . \mathrm{cm}$
\therefore Number of tiles required $=\frac{1872 \times 1320}{24 \times 24}=4290$
9. In a school, the strength in $8^{\text {th }}, 9^{\text {th }}$ and $10^{\text {th }}$ standards are respectively 48,42 and 60 .Find the least number of books required to be distributed equally among the students of $8^{\text {th }}, 9^{\text {th }}$ and $10^{\text {th }}$.
$48=2 \times 2 \times 2 \times 2 \times 3=2^{4} \times 3$
$42=2 \times 3 \times 7$
$60=2 \times 2 \times 3 \times 5$
\therefore LCM $=2^{4} \times 3 \times 5 \times 7=1680$
\therefore The least number of books required to be distributed equally among the students $=1680$
10. x, y and z start at the same time in the same direction to run around a circular stadium. x completes a round in 126 seconds, y in 154 seconds and z in 231 seconds, all starting at the same point. After what time will they meet again at the starting point? How many rounds would have x, y and z completed by this time?
$126=2 \times 3 \times 3 \times 7=2 \times 3^{2} \times 7$
$154=2 \times 7 \times 11$
$231=3 \times 7 \times 11$
\therefore LCM $=2 \times 3^{2} \times 7 \times 11=1386$
\therefore After 1386sce time will they meet again at the starting point.
By this time X completed $=\frac{1386}{126}=11$ rounds
Y compleeted $=\frac{1386}{154}=9$
Z compleeted $=\frac{1386}{231}=6$

ILLSTRATIVE EXAMPLE

Example1:Prove that $5-\sqrt{3}$ is an irrational number.
Proof: Let us suppose, $5-\sqrt{3}$ is a rational number
$\Rightarrow 5-\sqrt{3}=\frac{\mathrm{p}}{\mathrm{q}}[\mathrm{q} \neq 0$, and $(\mathrm{p}, \mathrm{q})=1]$
$\Rightarrow 5-\frac{\mathrm{p}}{\mathrm{q}}=\sqrt{3}$
$\Rightarrow \frac{5 \mathrm{q}-\mathrm{p}}{\mathrm{q}}=\sqrt{3}$

SSLC Class Notes Chapter -3

$\frac{5 \mathrm{q}-\mathrm{p}}{\mathrm{q}}$ is a rational number and $\sqrt{3}$ is not a rational number This gives us a contradiction.
\therefore our supposition that $5-\sqrt{3}$ is a rational number is wrong
$\therefore 5-\sqrt{3}$ is an irrational number.
Example2; Prove that $\sqrt{3}+\sqrt{2}$ is a rational number .
Proof:Let us suppose $\sqrt{3}+\sqrt{2}$ is a rational number
$\Rightarrow \sqrt{3}+\sqrt{2}=\frac{\mathrm{p}}{\mathrm{q}}[\mathrm{q} \neq 0$, and $(\mathrm{p}, \mathrm{q})=1]$
$\Rightarrow \sqrt{3}=\frac{\mathrm{p}}{\mathrm{q}}-\sqrt{2}$
$\Rightarrow 3=\frac{\mathrm{p}^{2}}{\mathrm{q}^{2}}-2 \times \frac{\mathrm{p}}{\mathrm{q}} \sqrt{2}+2$
$\Rightarrow 2 \mathrm{x} \frac{\mathrm{p}}{\mathrm{q}} \sqrt{2}=\frac{\mathrm{p}^{2}}{\mathrm{q}^{2}}+2-3$
$\Rightarrow 2 \mathrm{x} \frac{\mathrm{p}}{\mathrm{q}} \sqrt{2}=\frac{\mathrm{p}^{2}}{\mathrm{q}^{2}}-1$
$\Rightarrow \sqrt{2}=\frac{\mathrm{q}\left(\mathrm{p}^{2}-\mathrm{q}^{2}\right)}{2 \mathrm{pq}^{2}}$
$\frac{\mathrm{q}\left(\mathrm{p}^{2}-\mathrm{q}^{2}\right)}{2 \mathrm{pq}^{2}}$ is a rational number and $\sqrt{2}$ is a rational number
This gives us a contradiction..
\therefore our supposition that $\sqrt{3}+\sqrt{2}$ is a rational number is wrong
$\sqrt{3}+\sqrt{2}$ is an irrational number
Example 3: Prove thant $\sqrt{2}$ is an irrational number.
Let us assume that $\sqrt{2}$ is a rational number.
$\Rightarrow \sqrt{2}=\frac{p}{q} \quad(\mathrm{p}, \mathrm{q} \in \mathrm{Z} ; \mathrm{q} \neq 0, \mathrm{p}$ and q are co - prime $)$
$\Rightarrow \sqrt{2} q=p$
$\Rightarrow(\sqrt{2} q)^{2}=p^{2}$
$\Rightarrow 2 \mathrm{q}^{2}=\mathrm{p}^{2}$
$\Rightarrow 2$ divides p^{2}.
$\Rightarrow 2$ divides $\mathrm{p} \quad \therefore \mathrm{p}$ is even
Let $\mathrm{p}=2 \mathrm{k}$ where ' k ' is an integer
$\Rightarrow \mathrm{p}^{2}=(2 \mathrm{k})^{2}$
$\Rightarrow 2 \mathrm{q}^{2}=(2 \mathrm{k})^{2}$
$\Rightarrow 2 q^{2}=4 \mathrm{k}^{2}$
$\Rightarrow q^{2}=2 \mathrm{k}^{2}$
$\Rightarrow 2$ divides q^{2}.
$\Rightarrow 2$ divides $\mathrm{q} \quad \therefore \mathrm{q}$ an even
\therefore both 'p' and 'q' are even
\therefore ' p ' and ' q ' have common factor 2
This is contradictory to our assumption that ' p ' and ' q ' are co-prime.
\Rightarrow our assumption that $\sqrt{2}$ is a rational number is wrong
$\therefore \sqrt{2}$ is an irrational number

SSLC Class Notes Chapter -3

Exercise 1.3

1. Prove that $\sqrt{5}$ is an irrational number.

Let us assume that $\sqrt{5}$ is a rational number.
$\Rightarrow \sqrt{5}=\frac{p}{q} \quad(\mathrm{p}, \mathrm{q} \in \mathrm{Z} ; \mathrm{q} \neq 0, \mathrm{p}$ and q are co - prime $)$
$\Rightarrow \sqrt{5} q=p$
$\Rightarrow(\sqrt{5} q)^{2}=p^{2}$
$\Rightarrow 5 \mathrm{q}^{2}=\mathrm{p}^{2}$
$\Rightarrow 5$ divides p^{2}.
$\Rightarrow 5$ divides p .
Let $\mathrm{p}=5 \mathrm{k}$ where ' k ' is an integer
$\Rightarrow \mathrm{p}^{2}=(5 \mathrm{k})^{2}$
$\Rightarrow 5 \mathrm{q}^{2}=(5 \mathrm{k})^{2}$
$\Rightarrow 5 \mathrm{q}^{2}=25 \mathrm{k}^{2}$
$\Rightarrow q^{2}=5 \mathrm{k}^{2}$
$\Rightarrow 5$ divides q^{2}.
$\Rightarrow 5$ divides q .
$\therefore \mathrm{p}$ and q have common factor 5 .
This is contradictory to our assumption that ' p ' and ' q ' are co-prime.
\Rightarrow our assumption that $\sqrt{5}$ is a rational number is wrong
$\therefore \sqrt{5}$ is an irrational number
2. Prove that the following are irrational numbers.
(i) $2 \sqrt{3}$

Let us assume that $2 \sqrt{3}$ is a rational number.
$\therefore 2 \sqrt{3}=\frac{p}{q}$ ఆतిరెలి $(\mathrm{p}, \mathrm{q} \in \mathrm{z} ; \mathrm{q} \neq 0)$
$\Rightarrow \sqrt{3}=\frac{p}{2 q}$
$\Rightarrow \sqrt{3}$ is a rational number $\because \frac{p}{2 q}$ is a rational number.
But $\sqrt{3}$ is not a rational number .
This gives us a contradiction.
\Rightarrow our assumption that $2 \sqrt{3}$ is a rational number is wrong
$\therefore 2 \sqrt{3}$ is an irrational number.
(ii) $\frac{\sqrt{7}}{4}$

Let us assume that $\frac{\sqrt{7}}{4}$ is a rational number.
$\therefore \frac{\sqrt{7}}{4}=\frac{p}{q}$ ఆగిరెల゚ $(p, q \in z ; q \neq 0)$
$\Rightarrow \sqrt{7}=\frac{4 p}{q}$
$\Rightarrow \sqrt{7}$ is rational number $\because \frac{4 p}{q}$ is rational.
But $\sqrt{7}$ is not a rational number
This gives us a contradiction.

SSLC Class Notes Chapter -3

\Rightarrow our assumption that $\frac{\sqrt{7}}{4}$ is a rational number is wrong
$\therefore \frac{\sqrt{7}}{4}$ is an irrational number.
(iii) $3+\sqrt{5}$

Let us suppose $3+\sqrt{5}$ is a rational number
$\Rightarrow 3+\sqrt{5}=\frac{\mathrm{p}}{\mathrm{q}}[\mathrm{q} \neq 0$, and $(\mathrm{p}, \mathrm{q})=1]$
$\Rightarrow \sqrt{5}=\frac{p}{q}-3$
$\Rightarrow \sqrt{5}=\frac{p-3 q}{\mathrm{q}} \Rightarrow \sqrt{5}=\frac{\mathrm{q}\left(\mathrm{p}^{2}+2 \mathrm{q}^{2}\right)}{2 \mathrm{pq}^{2}}$
$\sqrt{5}$ is a rational number $\because \frac{p-3 q}{q}$ is a rational number
But $\sqrt{5}$ is not a rational number
This gives us a contradiction.
\Rightarrow our assumption that $3+\sqrt{5}$ is a rational number is wrong
$\therefore 3+\sqrt{5}$ is an irrational number.
(iv) $\sqrt{2}+\sqrt{5}$

Let us suppose $\sqrt{2}+\sqrt{5}$ is a rational number
$\Rightarrow \sqrt{2}+\sqrt{5}=\frac{\mathrm{p}}{\mathrm{q}}[\mathrm{q} \neq 0$, and $(\mathrm{p}, \mathrm{q})=1]$
$\Rightarrow \sqrt{2}=\frac{\mathrm{p}}{\mathrm{q}}-\sqrt{5}$
$\Rightarrow 2=\frac{\mathrm{p}^{2}}{\mathrm{q}^{2}}-2 \times \frac{\mathrm{p}}{\mathrm{q}} \sqrt{5}+5$
$\Rightarrow 2 \times \frac{\mathrm{p}}{\mathrm{q}} \sqrt{5}=\frac{\mathrm{p}^{2}}{\mathrm{q}^{2}}+5-2$
$\Rightarrow 2 \times \frac{\mathrm{p}}{\mathrm{q}} \sqrt{5}=\frac{\mathrm{p}^{2}}{\mathrm{q}^{2}}+3 \Rightarrow \sqrt{5}=\frac{\mathrm{q}\left(\mathrm{p}^{2}+3 \mathrm{q}^{2}\right)}{2 \mathrm{pq}^{2}}$
$\sqrt{5}$ is a rational number $\because \frac{\mathrm{q}\left(\mathrm{p}^{2}+3 \mathrm{q}^{2}\right)}{2 \mathrm{pq}^{2}}$ is rational number
But $\sqrt{5}$ is not a rational number
This gives us a contradiction..
\therefore our supposition that $\sqrt{2}+\sqrt{5}$ is a rational number is wrong
$\therefore \sqrt{2}+\sqrt{5}$ is an irrational number
(v) $2 \sqrt{3}-4$

Let us suppose $2 \sqrt{3}-4$ is a rational number
$\Rightarrow 2 \sqrt{3}-4=\frac{\mathrm{p}}{\mathrm{q}}[\mathrm{q} \neq 0$, and $(\mathrm{p}, \mathrm{q})=1]$
$\Rightarrow 2 \sqrt{3}=\frac{p}{q}+4$
$\Rightarrow \sqrt{3} \quad=\frac{p+4 q}{2 q}$
$\Rightarrow \sqrt{3}$ is a rational number $\because \frac{p+4 q}{2 q}$ is a rational number.
But $\sqrt{3}$ is not a rational number
This gives us a contradiction..
\therefore our supposition that $2 \sqrt{3}-4$ is a rational number is wrong
$\therefore 2 \sqrt{3}-4$ is an irrational number

